Complete Vehicle Testing of Car Occupant Muscle Responses for Integrated Safety Simulation

Jonas Öst, Jóna Marín Ólafsdóttir, Johan Davidsson, and Karin Brolin
Division of Vehicle Safety, Applied Mechanics
Chalmers University of Technology
Background

Chalmers Active Human Body Model Project

Aim:
Model occupant pre-crash responses with an FE HBM.

Achieved through modeling of neuromuscular control.

Requires validation data in relevant test cases.
Volunteer Test Aims

• Generate sets of validation data for "Active HBM"

• Investigate occupant kinematic and muscle responses in potential pre-crash scenarios

References:

Volunteers

- 11 males and 9 females
- No history of neck injury
- Sampling criteria: M50 and F50 +/- 10 kg and +/- 10 cm
Electromyography

- Surface electrodes on major muscles of upper body
- Normalized with MVCs in driving posture
Test Cases

Driver and Passenger

Autobrake PT Autobrake SB Driver Brake

Belt pulls 170 N

0.2 s

11 m/s²

Acceleration (m/s²)

Autobrake PT2–4 – Time (s) Autobrake SB – Time (s) Driver Brake – Time (s)
Test Vehicle
Passenger Side
Rear Seat...
"Test Track"
Autobrake PT

Autobrake SB

Driver Brake
Autobrake PT

Autobrake SB
Head Displacements: Drivers

In steady-state braking (1.5–1.7s)

* p<0.05
Shoulder Belt and Steering Wheel Forces: Drivers

Autobrake PT Autobrake SB Driver Brake
Muscle Responses: Drivers

Autobrake PT

Autobrake SB

Driver Brake
Model Validation

Autonomous Braking (SB)

Driver Braking

Conclusions

• Seat-belt pre-tension affects occupant postural responses
 — Pre-tension induces startle response in some volunteers
• Driver Brake postural responses are different from postural response to Autobrake

• Low muscle activations in normal driving (<5% for most muscles)
• Co-contraction of antagonist muscles in steady state braking
Future work

• Extend AHBM to cover lateral (steering) emergency avoidance maneuvers
• Conduct new volunteer for validation data and investigation of postural control in these events
• Challenges
 — Repeatability of steering maneuvers with non professional drivers
 — Effect of external threat (crash risk)
 — Large test matrix (many combinations, pre-tensed belt, combined with braking)
Acknowledgements

Project partners
Autoliv Research, Volvo Group, Volvo Cars, and Umeå University

Funding
VINNOVA – Swedish Governmental Agency for Innovation Systems, through the FFI – Vehicle and Traffic Safety research program