REDUCING DRIVER DISTRACTION WITH EFFICIENT UX DESIGN LEVERAGING HAPTIC FEEDBACK

Author: Aki Salminen, UX Lead
Company: Senseg ltd, electrostatic haptics (http://www.senseg.com)
Contact email: aki.salminen@senseg.com

CHALLENGES OF TOUCH SCREENS IN AUTOMOTIVE USE

- In-car controls are migrating from physical elements into touch screens
- Sense of touch and spatial learning are both lost in this transition
- This results in increased distraction of two kinds:
 - Visual distraction in finding out controls and verifying that actions succeed
 - Causing lateral control problems (1)
 - Cognitive distraction in interpreting the information architecture and current state
 - Causing change blindness (2) and speed fluctuation (1)
- Speech recognition has been employed to help with the visual distraction
 - Has its uses, but does not help the problems on cognitive side (3)
 - Orienting response (4) means visual distraction is still an issue
- All of this causes increased complexity and distraction compared to physical controls, decreasing driver safety and comfort significantly

SOLUTION PROPOSAL – COMBINING THE FOLLOWING METHODS

1) Simplifying the information architecture
 - Concentrate on what is really needed by the driver while driving
 - Beware of cutting too much functionality as users may revert to using their phones
2) Using simple and intuitive gestures
 - Mobile UIs have used these to great effect, car touch design is not yet as mature
 - Getting rid of location specific controls reduces the need for glancing
 - Using digital gestures where possible decreases the needed precision (5)
3) Separating control area from visual screen
 - Prevents user’s hand covering visual data during activity
 - Visual data can reside closer to field of view in instrumentation/HUD/AR device
 - Control screen visuals kept to a minimum, further reducing the need for glancing
4) Combining the screens mentally with multi-sensory feedback
 - Visual, audio and haptic feedback used together make a convincing experience (6)
 - Haptic feedback is the fastest sensory channel for positive and negative feedback
 - Works sub-consciously, increasing both confidence of use and learnability
 - Haptics are the glue, making the use of multi-screen systems effortless

REFERENCES

1) EU project - Human Machine Interaction and the Safety of Traffic in Europe (HASTE), 2005
2) Black, Sawyer, Kiken, Gutzwiller, McGill, Clegg - Cognitive load while driving impairs memory of moving but not stationary elements within the environment, 2014
3) AAA Foundation for Traffic Safety - Measuring cognitive distraction in the automobile, 2013
4) Reimer, Mehler - The Effects of a Production Level "Voice-Command" Interface on Driver Behaviour: Summary Findings on Reported Workload, Physiology, Visual Attention, and Driving Performance, 2013
5) Tuomo Kujala - Browsing the information highway while driving: three in-vehicle touch screen scrolling methods and driver distraction, 2013
6) Pitts, Skrypchuk, Wellings, Attridge, Williams - Evaluating User Response to In-Car Haptic Feedback Touchscreens Using the Lane Change Test, 2012